Skip to content

Papers & Publications

All our work is underpinned by rigorous research and testing. Please look across these key publications supporting the work to date.

 

Bisphosphonate nanoclay edge-site interactions facilitate hydrogel self-assembly and sustained growth factor localization
Nature Communications 2020 / Key Read

Here we showed it was possible to use specific interactions between clay nanoparticles and bisphosphonates tethered to a polymer, to generate self-assembling hydrogels with enhanced mechanical properties. Because of the specific way bisphosphonates bind to clay, other key binding sites are preserved to allow nanoclay localisation of active pharmaceutical agents such as BMP-2.

Bone induction at physiological doses of BMP through localization by clay nanoparticle gels
Biomaterials 2016 / Key read

Nanoclay particles can self-assemble into gels under physiological conditions and bind growth factors for enhanced and localized efficacy. Here we show the ability to localize and enhance the activity of BMP-2 to achieve ectopic bone formation at doses within physiological sub-microgram per ml range of concentrations and at approximately 3000-fold lower than those employed in clinical practice.

Self‐Assembling Nanoclay Diffusion Gels for Bioactive Osteogenic Microenvironments
Advanced Healthcare Materials 2018 / Key read

Here, the potential to harness the gel-forming properties of nanoclay to generate injectable bioactive microenvironments for osteogenesis is demonstrated. A diffusion/dialysis gelation method allows the rapid formation of stable transparent gels from injectable, thixotropic nanoclay suspensions in physiological fluids. Further encapsulation of skeletal stem cell-containing populations in the diffusion gels significantly enhances osteogenic protein expression compared with 3D pellet culture controls.

skin irritation

Synthetic Nanoclay Gels Do Not Cause Skin Irritation in Healthy Human Volunteers
ACS Biomater. Sci. Eng. 2021

The aim of this study first-on-human study was to test whether nanoclay gels cause irritation when applied on healthy human skin. The study confirmed that nanoclay caused no prolonged increase in inflammation and preserved skin barrier function better than another widely used topical gel. This study confirms that nanoclay is not an irritant and is suitable for therapeutic interventions at the skin surface.

The role of lithium in the osteogenic bioactivity of clay nanoparticles
Biomaterials Science 2021

It is known that nanoclays can directly stimulate bone-forming activity in skeletal stem cells independently of any added drugs or bioactive molecules. This is often assumed to be down to the chemical influence of the metal ions that are released by nanoclays as they degrade in a cell. However, this study showed that the bioactive effects of clay on cells are not due to its chemical components, but rather to the physical influence of the clay particles themselves.

Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue in vitro and in vivo
Biofabrication 2020

This study reported the application of a nanoclay composite gel optimised for 3D printing of skeletal stem cells to promote blood vessel formation and enhance bone formation in vivo.

Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks
Biofabrication 2019

This paper reported the application of nanoclays to develop a novel light-curable nanocomposite bioink for 3D skeletal regeneration. The composite allowed high fidelity printing of viable cells and active growth factors and stimulated blood vessel formation.

The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine
Biomaterials 2019

A review of bio-inks for 3D printing of cell-laden hydrogels for bone regenerative medicine. 

Injectable nanoclay gels for angiogenesis
Acta Biomaterialia 2019

Here, we explored the capacity of nanoclay gels to deliver VEGF, a molecule that stimulates the growth of blood vessels. The results indicate that the nanoparticles enhance the VEGF efficacy by retaining it at the implantation site for a prolonged period. 

Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity
Biomaterials 2018

A review article examining the literature describing the intrinsic bioactivity of nanoclay and how it can be harnessed to activate stem cells for repair. 

Harnessing Clay for Regenerative Medicine
Impact Publication 2018

An overview of the nanoclay research conducted at University of Southampton Bone and Joint Research Group.

Development of a clay based bioink for 3D cell printing for skeletal application
Biofabrication 2017

Here, we developed a nanoclay composite gel optimised for 3D cell printing. The addition of nanoclay was shown to allow plotting of hydrogel scaffolds with unusually high accuracy in clinically relevant dimensions and shapes.

Clay: New Opportunities for Tissue Regeneration and Biomaterial Design
Advanced Materials 2013

This review article explored previous studies seeking to harness clays in medicine and lays out a vision for harnessing nanoclay interactions with polymers, drugs and cells for regenerative medicine.

Clay Gels For the Delivery of Regenerative Microenvironments
Advanced Materials 2011

Our flagship study pioneering the application of self-assembling nanoclay gels for regenerative medicine.